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The stability of a parallel flow periodic in the direction normal to the stream is 
investigated theoretically. Critical Reynolds numbers are calculated for a general 
velocity profile including widely separated wakes. The critical mode of disturbance 
is found to have the same period as the basic flow. Growing modes with much larger 
periods exist, however, a t  slightly supercritical values of the Reynolds number. The 
analysis of various limiting cases explains the qualitative difference in the shape of 
the neutral curves depending on the period of the disturbance. In  connection with 
the results obtained in this paper, the stability of non-parallel periodic flows is briefly 
discussed. 

1. Introduction 
The stability of parallel flows of a viscous inc mpressible fluid has been investigated 

been obtained for all kinds of two-dimensionah unidirectional flows. Most of the 
unbounded flows investigated so far, however, are bhose that are uniform at infinity; 
for example, wakes, jets, free shear layers and boundary-layer flows. Much less 
attention has been given to flows periodic in the direction normal to the stream. 
Recently, Beaumont (1981) investigated the linear stabilsty of such a flow analytically 
in the inviscid limit and numerically at some finite Reynolds numbers. He studied, 
however, the viscous case in less detail than the inviscid case, and he did not give 
attention to  velocity profiles other than the sinusoidal one. His paper was published 
just after the research reported in this paper was completed. So in this paper we 
investigate the linear stability problem of spatially pxiodic flows mainly for the 
viscous case, and calculate the critical Reynolds numbers for more-general velocity 
profiles. 

The problem is also of much interest from a mathematical point of view. For a 
general velocity profile that is not necessarily periodic, the Orr-Sommerfeld equation 
allows a set of discrete eigenvalues and/or a set of continuous spectra. The 
eigenfunctions associated with these eigenvalues are supposed to form jointly a 
complete set. It has been proved that the eigenfunctions of the discrete eigenvalues 
form for themselves a complete set in the case of bounded flows such as plane 
Poiseuille flow or plane Couette flow (Lin 1961 ; DiPrima & Habetler 1969). So the 
continuous spectrum can appear only in unbounded flows, as demonstrated by Grosch 

for almost one century, and a great amount o 1 $ata on stability characteristics has 
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& Salwen (1978) for boundary-layer flow. But the continuous spectrum is damped 
and makes no essential contribution to the instability of the flow. Gustavsson (1979) 
and Salwen & Grosch (1981) showed that the eigenfunction for the continuous 
spectrum is obtainable by solving the Orr-Sommerfeld equation with a bounded 
boundary condition a t  infinity. I n  the case of the unbounded periodic flows to be 
investigated in this paper, the continuous eigenvalues play an absolutely important 
role because all the eigenvalues are found to  be continuous. 

The critical modes will be found in this paper to have the same period as the basic 
flow. At the same time, however, growing modes with a much longer period will be 
found a t  slightly supercritical values of the Reynolds number. This means that some 
larger-scale structures in space can develop in the unstable periodic flow. I n  fact, some 
flow patterns with double or triple period have been observed in the periodic wakes 
behind a row of cylinders (Matsui & Tamai 1974). Some kinds of grid turbulence 
contain spectral components of larger scale than the grid spacing. Quantitative 
accounts of these phenomena, however, are not available. 

2. Formulation of the problem 
Let (U(y), 0,O) be the velocity of a steady plane-parallel flow, taking the x-axis of 

a Cartesian coordinate system along the direction of the flow. Squire’s theorem (Squire 
1933) guarantees that we need consider only two-dimensional disturbances as long 
as only linearized theory is applied. The two-dimensional disturbance (u, v) can be 
expressed in terms of the stream function @(x, y, t )  as 

In  particular, we consider here a harmonic component 

II. = #(y) exp [ia(x-ct)l, (2.2) 

where a (> 0) represents the wavenumber in the x-direction, c,  = Re (c) the phase 
velocity, and aci = a I m  (c) the amplification rate of the disturbance. Substituting 
(2.1) and (2.2) into the equation of motion and neglecting the nonlinear terms, we 
obtain the Orr-Sommerfeld equation : 

1 d DE-, 
dY 

where the primes denote differentiation with respect to y, and R is the Reynolds 
number. Suppose that U(y) is periodic and that the velocity and the space variables 
are made non-dimensional so as to satisfy the conditions Urn,,- Umin = 1 and 
U(y+2n) = U(y). The velocity profile U(y) is not any exact solution of the Navier- 
St,okes equation, but i t  can be considered as a simple model of some real periodic flows. 
The boundary condition for # is given by 

#(y) < co a t  y = f m ,  (2.4) 

as in the case of the boundary-layer flow. 

assume each of the fundamental solutions consistent with (2.4) to have a form 
The equation (2.3) forms a Floquet system, and Floquet theory permits us to 

#(Y) = exp [iPYl f ( Y L  (2.5) 
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where /3 is a real constant and f(y+2n) = f(y). The parameter /3 specifies the period 
of the disturbances. The disturbance with p = l /n ,  where n is a non-zero integer, has 
the period 2n77, and the one with /3 = 0 has the same period 277 as the main flow, while 
an irrational value of p means an aperiodic disturbance. It should be remarked that 
this parameter does not appear in the original equation (2.3). 

Substitution of (2.5) into (2.3) provides the equation for f(y), namely, 

2- 2 2  d 

iaR dY 
( U - c ) ( B 2 - a 2 )  f -  V f  = --(B a ) f ,  B = -+ip, 

which is just (2.3) with D replaced by B. It is easily shown from (2.5) that  the range 
of /3 can be reduced to  the interval (-4, $1. If U(y) in (2.6) is an even function of y, 
this interval can be reduced further to the interval [O,;], which is the case treated 
in this paper. By (2.5) the problem is reduced to  one in the fundamental period 

Equation (2.6) contains a continuous parameter p. The eigenvalues of c may depend 
continuously on p. These eigenvalues therefore form the continuous spectrum stated 
before. Similarly the so-called neutral curve R = R(a,P) obtained by solving the 
equation ci = c,(a, R, p) = 0 forms some two-dimensional area on the ( R ,  a)-plane, 
which will be referred to  as a ‘neutral domain’ in this paper. All the neutral curves 
should be found within the neutral domain. Also inside the domain some growing 
modes exist throughout, and the critical Reynolds number is determined by the 
neutral curve on one border of this domain. The eigenfunctions given by (2.5) do not 
vanish at infinity. On account of this behaviour, they are sometimes called improper 
eigenfunctions, in contrast with the ordinary localized eigenfunctions. 

I n  the inviscid limit for bounded flows, several theorems have been established for 
the Rayleigh equation. Most of them can be extended to  a periodic velocity profile, 
since the operator D in (2.3) and,B in (2.6) are both antihermitian for real p and they 
are treated similarly in the partial integration. 

0 < y < 277. 

3. Numerical calculation 
For the numerical approach to (2.6) we have to  give an  appropriate form to the 

velocity distribution U(y). Lorenz (1972), Green (1974) and Beaumont (1981) treated 
the sinusoidal profile U ( y )  = sin y, which is a typical (and the simplest) form for a 
periodic velocity distribution. Another typical form is that  of the wakes behind a row 
of cylinders with intervals much longer than the diameter. So, in order to investigate 
the different effects of various U ( y )  profiles, we consider here a one-parameter family 
of velocity distributions which is simplified to a sinusoidal one in one limit and to 
periodic but sparsely spaced wakes in the other limit. 

We take the following as such a basic velocity distribution: 

where y is a positive parameter which varies from zero to  infinity, C, and C, constants 
depending on y ,  and 8, the Theta function of the third type (for its definition see 



48 K .  Gotoh, M .  Yamada and J .  Mizushima 

Y 

FIGURE 1. Velocity profiles of (3.1) for y = 2n, n and y -+ 0. 

Whittaker & Watson 1973, p. 464). The constant C2 is fixed by the normalization 
condition Urn,,- Urnin = 1 as 

Y 

C2W = (3.2) 
E exp [ - f (2% + 1)2]  ' 

a-0 

The other constant C, is an additive constant to U(y) .  Arbitrary choice of it does 
not affect the stability. For analytical investigation it is convenient to choose C, equal 
to C, in order that 

Jo2n U(y) dy = 0. 

But in this section we choose C, such that Urnin = 0 for convenience in computation. 
It is of course easy to transform results for one case to the other. 

The velocity profile (3.1) has the following asymptotic forms with respect to y 
(figure 1)  : 

Thus, as stated before, U ( y )  is reduced to the velocity profile corresponding to 
sparsely spaced wakes as y -+ 00, and to that of a sinusoidal flow as y -+ 0. In other 
words, (3.1) can express various periodic profiles extending from weak to strong 
interference of adjacent wakes. 

To solve (2.6) numerically we made use of spectral method with Fourier series. We 
expanded U ( y )  and f(y) into Fourier series and then truncated them as follows: 

Substituting (3.4) into (2.6), we obtained the eigenvalue problem of a finite- 
dimensional matrix : 

[Mij] t [ f - ~ T  * . , f ~ l  = c t [ f - ~ ,  * . . , f ~ l 7  (3.5) 
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a 

R 
FIQURE 2. Neutral-stability curves for y = n: (I) the first neutral domain; 

(11) the second neutral domain. 

FIQURE 3. Neutral-stability curves for y = 2n: (I) the first neutral domain; 
(11) the second neutral domain. 

A ,  = (m+P)2+a2 (m, n = - N , .  . ., N ) ,  

49 

and &,, = 1 if m = n, but is zero if m + n. We solved (3.5) by increasing N until 
convergence was plausibly obtained for the eigenvalues of c. In most cases, 
N = 10,15,20 were found to be sufficient to reduce the errors within one per cent. 

The calculated neutral curves are shown in figure 2 for y = n, and in figure 3 for 
y = 277. In each case, there are two separate domains in the (R,a)-plane. The left 
neutral domain in figure 2 is constructed by the neutral curves with a l l / 3 ~  [ O , & ] ,  where 



50 K .  Gotoh, M .  Yamada and J .  M i z u s h i m  

CUR 
FIGURE 4. Neutral-stability curves for y = 277 in the first domain plotted on (aR, a)-plane. 

the curve with p = 0 is on the left border of the domain, while that  with p = 4 is near 
the right border. The right neutral domain is also constructed by the neutral curves 
with all BE [0,4], the order of which is, however, converse to that of the left one. Let 
us call these two domains the first and second domains respectively. Both neutral 
domains become rapidly larger as y varies from 2n to  n, that  is, as the effects of 
neighbouring wakes are intensified. Growing modes are to be found everywhere to 
the right of the neutral curves. The neutral curves of the second domain indicate a 
distinct family of modes which are growing to the right of these curves along with 
the other modes with respect to the first domain. 

On each of the neutral curves in both domains, a approaches some finite non-zero 
value at one end but zero on the other end. The shape is similar to that of the neutral 
curve for the single wake (Taneda 1963). Beaumont (1981) showed, in the case of 
U(y) = sin y, that  the wavenumber band of the unstable mode is separated into two 
parts with c,  = 0 and c,  =!= 0 for some fixed values of p a t  R = 14, 20 and 40. For 
general periodic flows, the band may separate not into the simple pair stated above, 
but into some more complicated parts. The ‘forehead’ shape of the neutral curves 
in our calculation, for example the curve for y = n and p = in the first domain, may 
be a reflection of this separation, but we do not pursue this problem in detail here. 
A brief comment will be added in $4. 

In  every case calculated in the present investigation, the critical Reynolds number 
R, = minR(u,p) is given for a = p = 0. This result is consistent with Green’s 

comment that the most unstable mode would have the same period as the main flow 
(Green 1974). He showed that, in the case of U(y) = sin y, R(a,,!?) approaches a 
non-zero and finite value as a+O on the neutral curve for the antisymmetric 
disturbance ($( - y) = $(y)) with p = 0. This is also true for our velocity profile (3.1), 
and it  will be shown in $4 that  this holds for every periodic velocity profile. An integral 
formula for evaluating R(0,O) exactly will be given there which yields results that  
coincide exactly with those obtained by the numerical calculation. 

I n  the case of parallel flows with rigid boundaries, R goes to infinity as a + 0 on 
a lower branch of the neutral curve (Synge 19381, and to  zero or infinity in the case 

a, P 
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of unbounded free flows that become uniform as y -+ f 00 (Tatsumi & Gotoh 1960; 
Tatsumi & Kakutani 1958). The lower branch of the neutral-stability curve, which 
gives a non-zero and finite Reynolds number in the long-wave limit, is therefore a 
remarkable characteristic of the periodic velocity profile. 

In  contrast, in the cases where p + 0, the asymptotes of the lower branch of the 
neutral curves are R -P 00 as a + 0 .  This means that, in the long-wave limit, the 
unstable modes are only those with the same period as the main flow, which will be 
shown analytically in the following sections for an arbitrary periodic but even 
velocity profile. Figure 4 ,  in which the curves are replotted on the (aR, a)-plane, shows 
that, on a curve for fixed non-zero p, aR approaches some constant independent of 
p, a t  least within the numerical error, as a -+ 0.  

Regarding the spatial symmetry of the eigenfunction, we found that the eigen- 
function with /3 = 0 in the first domain is even, and the one with /? = 0 in the second 
domain is odd. Except for these cases, no symmetry could be found. 

4. Critical Reynolds number 
I n  this section and $5 we proceed with the analytical approach to the problem, 

the results of which will justify the numerical results obtained in $3. The long wave 
is treated in this section on the neutral curve with p = 0 in the first domain. The 
asymptotic behaviour of the neutral curves will be treated in $5.  I n  these sections 
some types of integration appear frequently, and so we use a simplified notation 
defined as follows for arbitrary integrable functions f ( y )  and g(y) : 

(4.1 a, b)  

(4.1 c )  

( 4 . l d )  

the first being the integral over a single period, the second the mean over a single 
period, and the third the indefinite integral in which the integration constant is 
determined so that the mean of the integrated function vanishes. It is easily seen that 
they have the following properties : 

ffy) is periodic if $ f = 0, (4 .2b)  

( 4 . 2 ~ )  

Lastly, U(y) denotes an arbitrary periodic velocity profile if not specified, the 

normalization of which is made by the condition U = 0, as stated in $3.  Another 
normalization is the same as before. 
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We expand the quantities in (2.6) into power series in the wavenumber a: 

f = fo+ef1+e2fi+ ..., 

c = c 0 + c 1 e + e 2 e ~ +  ..., 

R = R,+R,e+R,e2+ ..., 

(4.3a) 

(4 .34 

(4.36) 

where e = ia, all the f ,  are periodic functions with period 2n, and the coefficients R, 
and c, are real for even n and pure-imaginary for odd n. Substituting (4.3) into the 
following form of (2.6). 

f’” = E R { ( U - c ) f ” -  U ” f ) - 2 2 ~ ~ f ” + e ~ R ( / r - ~ ) f - € ‘ f ,  (4.4) 

we get successive equations for f,, namely, 

f z  = x Rj [ J f l - [ J ” f k -  C c f ”  
j+k=fl-l { l+m=k 4 

-2f,”-,+ Rj{[Jfk- C z f m } - f f l - 4  ( n = 0 , 1 , 2  ,.... ), (4.5) 
j+k-n-3 Zfm-k 

where the f k ,  R, and ck with negative k should be put equal to  zero. Some ambiguities 
have still been left in the f ,  as to the components parallel to f , ,  for removal of which 

we can assume f ,  f n  = 0 for n $. 0. i 
Since the f ,  are periodic, the integral of the right-hand side of (4.5) over one period 

(4.6) 

where use has been made of the fact that f o  = 1 from (4.5) and the normalization of 
f o .  It can be proved that (4.6) is a sufficient condition for the f ,  to  be periodic. Thus 
(4.6) is the solvability condition for (4.5). If f ,  is noted to be the solution of the adjoint 
homogeneous equation of (4.5). the solvability condition (4.6) is of course obtained 
by the familiar procedure. 

should vanish, i.e. 

j f k=n-3  R j ” I c . f . - e k  il] = 8n4$13 

By solving (4.5) for n = 1 ,  we have 
- 

f l  = -RoU, (4.7) 

where the bar operation is defined in (4 . ld) .  Thus f l  is real and even if U ( y )  is also 
even. Putting n = 3 in (4.6), we have Roco  = 0. Equation (4.6) becomes for n = 4 

Then co = c1 = 0, and R, is obtained from (4.2), (4.7) and (4.8) as follows 

J J 

This is the formula for the limiting Reynolds number R, as a + 0 on the neutral curve 
with /3 = 0 in the first domain. 

By the method of mathematical induction, i t  can be proved for all integers n that 
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FIGURE 5. R, for the velocity profiles (3.1). The two crosses show the values (Ro, y )  = (2.828, n) and 
(3.129, en) obtained by the numerical calculation in $3.  

cZnfl = R,,,, = 0 and that f, is real and even if U ( y )  is. Also, the f,, c,, and R,, 
can be obtained successively from (4 .6)  and (4 .8) ,  for example 

f2 = R:( U”F- U’), (4.10a) 

c2 = Ri( E( U” E- U’)), (4.10b) 

R,=-- iR: [ 3R,( ( E),) + ( E (  U’2’- ulf,))]. (4 .10~)  

I n  $3, the neutral mode, obtained analytically here, was the critical mode, and R,, 
obtained in (4 .9 ) ,  was the critical Reynolds number. This is also in fact for the 
sinusoidal velocity profile considered by Green (1974) and others. For a general flow, 
however, a t  least the second proposition does not always seem to be true, because 
the expression for R, in (4.10) indicates the possibility that R, can take a positive 
value for a particular velocity profile. This conjecture will be supported by the 
following discussion. 

Using the formula (4 .9)  for the velocity profile (3.1), we obtain R, explicitly: 

- 

(4.11) 

which is shown graphically in figure 5 .  Perfect agreement is shown between the 
analytical and the numerical results. Equation (4.1 1) is reduced asymptotically to 

d8 (1 -4  exp ( -7) + exp ( -7) + . . . ) ( y  + 0), (4 .12a)  

( y  -P 00).  (4.12b) 3y2 
7r3 

Thus, in the limit of small values for y ,  R, approaches 4 8 ,  the value for the sinusoidal 
velocity profile obtained by Green (1974) by making use of a special relation between 
the Fourier components valid only for the sinusoidal flow. (This value is 4 2  in his 
paper owing to different scaling.) In  the limit of large value of y ,  R, diverges as tbe 
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square of y.  I n  this case the main flow becomes similar to  a single wake. Then, for 
a sufficiently large value of y ,  it is reasonable that the critical Reynolds number is 
approximately that for the single wake. In  this approximation, rescaling shows that 
the critical Reynolds number depends linearly on y when y is large. Thus R, goes 
to infinity faster than the critical Reynolds number as y -+ co . This means that, for 
a large value of y ,  R, can never be the critical Reynolds number, and in this case R, 
in (4 .3)  must have a positive value as conjectured. 

Finally, it should be remarked that the sinusoidal velocity profile may be typical 
but is rather special for investigation of the stability of periodic flows, because in such 
a case the factor U E -  U2,  which appears in each in (4.1Oa-c), vanishes exactly and 
then f ,  and c, vanish. This is presumably the reason why the condition c, = 0 can 
distinguish the unstable modes for sinusoidal flow (Beaumont 1981). I n  the general 
case, these modes may be separated into some more complicated sets as stated in $ 3 .  

K .  Gotoh, M .  Yamada and J .  Mizushima 

5. Asymptotic behaviour of the neutral curves 
The neutral curves presented in $3 exhibit remarkable distribution of the asymp- 

totes. An important part of the dependence of the distribution upon /3 can be made 
clear by the following analysis. 

First, we consider the growth rates of the long-wave disturbances with small values 
of p. Define a small parameter t: = aR and put 

a = a,€,  p = PI€, ( 5 . 1 )  

where new parameters a1 and bl are assumed independent of 6. Substituting (5.1) and 
the power-series expansion 

f = f , + € f 1 + € 2 f 2 +  ... ) ( 5 . 2 ~ )  

c = c,+€cl+€2c2+ ... ( 5 . 2 b )  

into (2.6), we get the equations for f,, namely, 

m-1 m-I 

As in $ 4 ,  the f n  are assumed to satisfy the orthogonality condition $ f o f n  = $&,,. 

consistently put each of the f, in the form 
I n  the case of both U(y) and f(y) being even when p = 0, as analysed in $ 4 ,  we can 

where the g, are even and the h, odd. Substitution of (5 .4)  into (5 .3)  and separation 
of the resultant equation into even and odd parts provide the equations for g, and 
hn. The solvability conditions of these equations can easily be obtained in the same 
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manner as before ; from the equation for gn 

while the other condition is automatically satisfied. 
Now i t  can be seen essential to treat the following two cases separately: 

case ( i )  p1 + O  then al-+O, 

case (ii) a, -+ 0 then p1 -+ 0, 

because the solvability condition (5.5) generates the following different condition in 
each case: 

(5.6a) 

(5.6b) 

case (i) en-,$ 1 -$ ~ g ~ - ,  = 0, 

case (ii) cnP3$ 1 -$ 17gn-,+2i Uhg-2 = 0, $ 
while in both cases the equations for g n  and h, become 

(5 .7)  

n 

m=1 
h? = - i z cm-l + i( lTh;-l - LT”h,-,) 

n-1 

m=1 
+ 2  z Cm-lgg-l-m -4 ’$~-1 -2~‘g~-2 .  (5 .8)  

This non-uniformity just corresponds to the two distinct branches for the neutral 
curves shown in figure 4. 

Solving (5.7) and (5.8) for n = 0 and 1, we obtain 
= 

go = 1, g1 = -iu, h, = h ,  = 0. (5.9) 

Substitution of (5.9) into (5 .6~1,  b )  with n = 3 leads to co = 0 in both cases, and then 
the solutions of (5.7) and (5.8) with n = 2 are obtained as 

g, = ([P- [YV), h, = -411. (5.10) 
- = 

From (5.9), (5.10) and (5.6a, b )  with n = 4, we obtain 

case (i) 
- i 

c1 = i( ( IT),) = -, (5.1 1 a )  
RE 

7 
case (ii) c1 = - 7i( ( U), )  = - - i. 

RE 
(5.1 1 b)  

Thus the mode in case (i) is a growing mode, while that in case (ii) is a decaying 
mode. This agrees with the conclusion of the numerical calculation that the growing 
mode is only one with the same period as the main flow in the long-wave limit for 
fixed R (figure 4). If we do not take the limit a, --* 0 while putting p1 zero in case 
(i) then we can get, after a similar calculation to that above, 

(5.12) 

Thus the expression (4.9) is again obtained on the neutral curve where c1 is real. 
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Next we consider the upper branch of the neutral curves. It seems appropriate to 
remark here that when the value of c can be fixed so as to make U/( U -  c) regular, 
the inviscid limit of (2.6) is just the Schrodinger equation with the periodic potential 
U”/( U-c) .  In  the latter equation, /3 represents the wavenumber of the wave function 
and - a2 the energy eigenvalue, and the range of - a2 is called the energy band, which 
is a fundamental concept in solid-state physics. I n  the band theory, it has been proved 
that aa/ap=+O unless p =  0 or 4 (Jones 1975). Thus, if the negative-energy 
eigenvalues are obtainable for all p between 0 and 3, then each neutral domain should 
be bordered by the neutral curves with p = 0 or &, as shown by our numerical 
calculation. 

When p = 0, Rayleigh’s inflexion-point theorem and the converse theorem can be 
extended to the velocity profile U(y) for which there exists a value of c such that 
U/( U - c )  has no singularity and keeps its sign in the fundamental period of y. The 
extension assures a t  least a real periodic solution of the Rayleigh equation,f,(y) say, 
together with the eigenvalue of a, a, say, and c determined by the above condition. 

For small values of /3, the perturbation calculus provides the expression of the 
eigenvalue of a in the form: A 

where 

(5.13) 

andf,(y) is the solution of the Rayleigh equation linearly independent offl(y). The 
functions fl and f2 have been normalized so as to make their Wronskian equal to unity. 

For the largest eigenvalue of a, i t  has been known that the eigenfunctionf,(y) does 
not vanish in the interval [0,2n] (see e.g. Ince 1956), which enables us to have 

(5.15) 

Thus A defined by (5.14) is found to be negative-definite, and in the first neutral 
domain a decreases as /3 increases from zero. The eigenfunction for the second-largest 
eigenvalue of a,, on the other hand, vanishes a t  y = 0 and n. It makes (5.15) 
inapplicable, and we have to go back to (5.14) for the evaluation of A .  

It is well known that the Rayleigh equation is rather easy to solve numerically. 
For the cigenvalues, however, i t  is easier to use an approximation on the basis of the 
formal analogy between the inviscid equation and the Schrodinger equation. When 
c is fixed so as to make U/( U - c )  a regular function for any symmetric U(y), i t  can 
be expanded into an even power series in y :  

(5.16) 

Using the simplest approximation in which the first two terms of the expansion (5.16) 
are taken into consideration, we can easily obtain the solution of the eigenvalue 
problem. Because a2 must be non-negative, only a finite number of the solutions are 
physically permissible. The improved solution can be obtained by taking the quartic 
term in (5.16) into account as a perturbation (see e.g. Feynman 1972), namely, 

(2n2+2n+l) (n  = 0 , l ) .  (5.17) 

Only two real eigenvalues are obtained here, consistent with the numerical results 

3B 
a; = - B 0 - ( 2 n + 1 ) 1 4 - 2  

4 4  
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in $3.  The values a,, = 1.916 and a, = 1-039 thus obtained in the case of y = 277 show 
fairly good agreements with the results in $3.  

It should be remarked that the approximation is appropriate when the profile of 
the main flow is a superposition of widely separated flows, because in this case the 
eigenfunction takes significant values only in the region where the approximation 
(5.16) is valid. Even in such a case, however, the precise evaluation of A cannot be 
done by the present approximation, because inaccurate small values of f,(y) a t  points 
not close to y = 0 make a significant contribution to f2(2n).  Nevertheless, i t  is almost 
evident that  the magnitude of A will be very small, which explains qualitatively the 
drastic convergence of the first domain in the inviscid limit in figure 2 .  For the main 
flow of periodic broad wakes, we should consider the problem using more-refined 
techniques as in the band theory in solid-state physics. However, in such a case the 
direct numerical calculation may be most useful. 

6. Discussion 
I n  this paper we have examined the stability of a spatially periodic parallel flow. 

No discrete eigenvalues exist in this problem, and all the eigenvalues are continuous 
and all the eigenfunctions are improper in the sense that they do not vanish a t  infinity. 

Existence of the continuous eigenvalue has been known in the problem of a 
boundary-layer flow on the grounds that only a finite number of discrete eigenvalues 
are allowed to exist, so that an arbitrary disturbance needs improper eigenfunctions 
in its evolution. I n  boundary-layer flow, however, all the continuous modes have been 
found to be decaying, and so i t  is the Tollmien-Schlichting wave which plays the 
essential role in the instability of the flow. This conclusion is valid, as was proved 
by Grosch & Salwen (1978), for all unbounded flow that is uniform a t  infinity. In  the 
case of periodic flows, on the other hand, i t  is not applicable, that is, only continuous 
eigenvalues exist, for which growing modes are found. This is a most important 
characteristic of unbounded periodic flows, and leads to  the continuously distributed 
neutral curves defining the neutral domains. 

An arbitrary disturbance in the periodic flow must be expressed by only improper 
eigenfunctions and they contain a factor exp (ipY), so the disturbance propagates 
obliquely across the undisturbed stream in the (x, y)-plane. Since /3 is a continuous 
function of c, the disturbance initially in the form of a wave packet will propagate 
with some angular distribution of intensity. We do not know so far whether this 
phenomenon has been or can be observed in a suitable experiment. 

The critical Reynolds number R, in our calculation is always associated with the 
modes of the same period as the main flow. However, a t  the Reynolds number in an 
arbitrary upper neighbourhood of R,, the growing modes of much longer periods have 
been found to  exist. So when the flow becomes unstable, these modes will grow almost 
simultaneously, and then the flow may have a larger-scale structure than the original 
flow. 

The critical Reynolds number obtained in $2 is not large enough for the funda- 
mental assumption of parallel flow to be valid exactly, or even approximately. How- 
ever, the existence of the continuous spectrum and the appearance of a larger-scale 
structure are postulated for an exact non-parallel periodic solution U(X) of the 
Navier- Stokes equation as follows. Suppose that U(x) has the periods a and b as 
U(x) = U(x+ a) = U(x + b). This type of periodic flow is realized, for example, when 
a grid is set transversely to  a uniform flow. The linearized equations for the disturb- 
ance U(X, t) in such a non-parallel periodic flow consist of a set of partial differential 
equations involving some periodic functions with the same periods as U(x). This set 
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of equations is invariant to the translational group generated by a and b. The 
representation theory of groups (Tinkham 1974) ensures that the solutions of such 
equations, which remain finite at infinity, have the form u(x, t )  = exp (isx + at) f(x), 
where f(x) has the same period as the main flow, $ is an arbitrary real constant vector 
and u is the growth rate of the disturbance. The argument so far is rigorous and the 
result is a generalization of Floquet’s theorem. On account of the continuous 
parameter all spectra are continuous, as in the present investigation. As a 
consequence we obtain the conclusion that if the flow could be in a supercritical state 
then some larger-scale structure than the main flow would appear in it. The 
eigenvalue problem to prove the existence of the critical Reynolds number in this 
case would surely be much more difficult than in the present investigation. 
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